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Damping Characteristics of Fiber Compcsites(*)

by

Zvi Hashin(**)

Abstract

Analytical results for complex moduli of uniaxially fiber reinforced mat-

erials made of viscoelastic matrix and elastic fibers are reviewed. A general

method is established to predict complex moduli and loss tangents of viscoelas-

tic laminates made of uniaxially reinforced laminae. Application of results

is demonstrated by two examples of analysis of damping of structural vibrations:

Attenuation of vibrations in uniaxially reinforced Timoshenko beam and torsional

vibrations of laminated cylinder.

Presented at 8th International Council of the Aeronautical Sciences (ICAS)
Congress, Amsterdam, August 28 - September 2, 1972.

(**) Professor.. Department of Materials Engineering,
Technion - Israel Institute of Technology.
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1. Introduction

The ever increasing use of fiber composites for aero/space structures

requires the development of rational methods for prediction of their rele-

vant properties within engineering accuracy.

} sIn most current fiber composites the matrix is a polymer such as epoxy.

It is well known that such polymers exhibit the effect of vibration damping.

Therefore such damping effects will also occur in comnosites in which the

matrix is polymeric. Since aero/space structures are subjected to severe

vibrational environment and since vibration damping is beneficial, the

quantitative prediction of such damping is of considerable engineering imp-

ortance.

It is of interest to emphasize the unique combination of desirable pro-

perties which are exhibited by fiber composites: Superior strength and

stiffness, low weight and vibration damping. No other materials seem to

possess this many advantages.

In order to handle the problem analytically, it is assumed that the

matrix is linearly viscoelastic. Its dynamic viscoelastic properties can

then be characterized in terms of the usual complex moduli of viscoelasticity

which are assumed to be known on the basis of experiments. The fibers are

represented as linear elastic. The composite with such constituents behaves

macroscopically as a linear viscoelastic body which is characterized by

effective complex moduli. There arise three classes of important investi-

gation:

-14
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(a) Prediction of effective complex moduli of a uniaxially reinforced

material on the basis of matrix complex moduli; fiber elastic moduli and in-

ternal geometrical parameters such as constituent volume fractions, fiber

shapes, etc.

(b) Prediction of the effective complex moduli of a laminate, whose

laninae are composed of uniaxially reinforced material, on the basis of the

uniaxial material effective complex moduli found in (a) aiid the laminate

internal geometry.

(c) Viscoelastic vibration analysis of structures made of fiber compo-

sites.

, These different kinds of problems will be discussed consecutively.

I
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2. Complex Moduli of Uniaxially Fiber Reinforced Materials

A general theory of prediction of effective complex toduli of composites

with linear viscoeltstic constituents has been given previously [1], [2), [3).

It will here suffice to discuss without proof some results which are pertinent

for the present investigation.

Let the local average strains and stresses in a composite be of oscillatory

nature. Thus-

=.. e lwt

(2.1)

where overbars denote average, 1 = 4, is frequency, t is time and latin

subscripts range over 1, 2, 3. The effective complex moduli C'jk, of a generally

&.nisotropic composite are defined by the relation:

(2.2)

Xc* I~ * (W (b)
-jkt(' cikL) = CC )ijkb

where superscripts R and I denote real and imaginary parts respectively.

The assumptior: is made that the fiber reinforced material under considera-

ticn is macroscopically transversely isotropic with respect to fiber direction.

Then (2.2a) assut-es the form:



all C11 Ell + C12 E2 + C12 633

a22 C1L2 Ell + C22 £22 + C22 £33

5 33 =C 12 Ell + C23 £22 + C22 £33

t (2.3)
a12 =2C 44  1

0T23 =(C 22 - C23)£23

EF3 2C44 £31

where xi is in fiber direction and X2, X3 are in the transverse plane, Fig. 1.

In another notation, the complex moduli in (2.3) are written:

C11 = 6i

C12 =

C 2 2 = k + GT(2.4)

C2 3 = i - 6T

C44 G GA

Here kis a transverse complex bulk modulus, G T -transverse complex shear

modulus in x2, xs plane and FA - axial complex shear modulus in planes contain-

ing fiber direction xl. The physical interpretation of fi and £is here of

little interest.

* Inversion of (2.3) is written in the form:



66

-1 22 a
EA tA EA

A22 -aal L -22 a33
-A ET ET

Ess=- L 33

"•A VT a2

FA ET ETI 42 - Ta2 ~.3 (2.5)

312

2dA

where E and are complex Youngs' moduli in axial (fiber) direction and

transverse (to fiber) direction, respectively, and i5A and aT are associated

complex Poisson's ratios.

Establis•hment oý.- analytical expressions for the various effective

complex moduli listed above in terms of matrix complex moduli, fiber elastic

moduli and phase geometry is based on a correspondence principle [1], (2]

which states: The effective complex modi 1 of a viscoelastic composite are

obtained by replacement of phase elastic moduli by phase complex moduli

of a composite with identical phase geometry.

In the usual fiber reinforced materials the following conditions are

'4A
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usually fulfilled with sufficient accuracy

(a) Fibers are by an order of magnitude stiffer than matrix

(b) The matrix is isotropic and is viscoelastic in shear only

(c) The matrix shear loss tangent is not larger than 0.1. Thus:

GI

tan 6 m m 0. 1  (2.6)G RGm

Under these conditions the following results have been shown [3]

to be valid.

(d) The imaginary parts of the effective complex moduli, i, 1, k,

EA are much smaller than the imaginary parts of the effective shear

moduli Ga G and of IT"

(e) To obtain real parts of all effective complex moduli it is

merely necessary to take corresponding expressions for effective elastic

elastic moduli and to replace in them matrix elastic moduli by real

parts of matrix complex moduli.

Some simple general results which are valid under the conditions

listed above will now be gie,:

iAC1W) �Em(,,) vm I Ef vf

R R
A m mfv

I~w I E I M v. (2.7)
A m

Nm

tan 6E << tan m"I R v
EA + fvf/Em M
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Here a and f denote matrix and fibers, respectively, PFd v stands for

volume fraction, tan 8 is the loss tangent for uninxial stressing in fiberE

direction while tan 6m is the corresponding loss tangent for the isotropic
E

matrix.

For axial shear
1 + +vf

G A('W) Gm(Thm) 1 v-

1. Vf
GR(w) ,= GR I÷vf

i 1- v

(2.8)

GA(w) uGm ;

tan 6 =tan 68m
GA G

For transverse shear

I- R m sl= 3itan SGGT= G~ 6 G

(2.9)

tan 6 tan S'

R
An expression for G. has been given in [2], [3]. Results for other

complex moduli may also be found in these references.

'Ih
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3. Complex Moduli of Laminates
w]

The lamiaates to be consider-d are composed of plane laminae of

uniaxially fiber reinforced materialsi the direction of reinforcement

being different in each lamina. The laminate is referred to a fixed

coordinate system xj, x2, xs where xI,*2 are in the plane of the lami-

nae and x3 is normal to it, Fig. 2. The nth lamina in the laminate is

(n) (n) ' (n)referred to a material system of axes ;Y . , x2n, x where xi is

normal to the fibers and x3 coincides with the laminate x3. The 'posi-

tion of the x, (n) X Ln) system is defined with respect' to the xi, X2

system by the reinforcement angle *

"(X = x('n), xI) MUC.
n

Fundamental assumptions of fiber composite laminate theory''are: (i) Any

lamina can be replaced by a homogenous material whose properties are the

effective properties of the uniaxial FRM ok which the lamina is made6

(b) The laminae are iný statesof plane stress.

First an elastic laminate will be considered. The plane s4,ress-strain

relations of a lamina referred to its material system of axes x (n) X(n)
,

are then: ' " n

(n) A (n) + (n)

Ell L- VA1 -a22
EA E

(n) V A (n)

* 2GA

El2 :

2CA • -,
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where:

E A - axial Youngs modulus (in fiber direction)

VA - associated axial Poisson's ratio

ET - transverse Youngs modulus (normal to fibers)

GA - axial shear modulus (in XI (n) ,X2( plane)

The inverse of (3.2) is:

Cy ) I 11 ell + C1262W

*t 22 (n) NC2 CuI(1) + C22 C22 ~ (3.3)

(n12

where

C12.• : C± 1Z22 : VAE-

Er
-A2

(3.4)

E~B V2

T

C12 •"CIL22 "1 -PA v

C•a = C1212 G

Vi

(3.4)

14.1
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In terms of the four index moduli in (3.4), (3.3) can be written

ccmpactly as:
a (n) C(n) (n) (3.5)

where here and from now on Gre.k indices range over 1, 2.

For the sake of simplicity there will be considered the special

group of laminates in which the application of membrane force N in the

plane of the laminate does not induce bending or torsion in the laminae.

The most important kind of laminate which fulfills this requirement is a

symmetric laminate. Such a laminate has the property that its middle

plane is a plane of symmetry for the geometry and elastic moduli of the

laminate. The laminate is thus composed of laminae pairs in each of

which the laminae are of same thickness, are symmetrically located with

respect to the middle plane and have the same elastic properties with

respect to the xi, xa system.

The last condition is most commonly fulfilled by laminae made of

identical material and same reinforcement angle en (3.1), in each pair.
nI

The elastic stress-strain relation of such a laminate is given by

N

CCe
(3.6)

NC = (n)c tn/h (b)
n=l
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where

•aa - applied average plane stress

- average strain

h - laminate thickness

Cczsy - effective elastic moduli of laminate

tn - thickness of nth lamina

N - number of laminae

(n)Caos - the laminae elastic moduli (3.4) transformed to the x1, X2

system of axes.

For establishment of the result (3.6) see e.g. [4]. Proof that (3.6)

is based on an elasticity solution which is exact in the Saint Venant sense

for a laminate whose thickness is small compared to its plane dimensions

has been given oy B.W. Rosen (unpublished).

Let it be now assumed that the laminate is viscoelastic but remains

symmetric as described above. The laminate is subjected to oscillatory

membrane loads

N N e~wt (3.7)

The average stresses associated with (3.7) are then:

Th sa e (3.8)

The strain response of the laminate is
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•~~cis3 as•t3e' (3.9) !

The relation between oa and • is written:

S= Cl (m) (3.10)

where C~oys are the effective complex moduli of the laminate.

It follows by the general correspondence principle of [1] which was

quoted above that C* can be expressed in form (3.6b). Thus:

N

naw E ay8(1) tn /h (3.11)

The single laminae complex moduli (n) a in (3.11) are interpreted as
follows: In the material axes x ), x2 of the nth lamina the stresses

and strains are:
O~1(n) =•6(n) eiwt

(3.1.2)
•1(n) (n iwt

~(n) (n n)
The relation between a1 and 1 in (3.12) is of type (3.3-3,4).

Thus:
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nC) Cn) - Cn)
aspzys eys (3.13)

1 T -2(
EA A'

E
t2222 -22

1ET..-2
EAA

Ci 1 212 C44a - G
A

where 'As T VA and GA are the effective complex moduli of the uniaxial

material which were discussed in par. 2.

If the complex stress strain relation (3.13) is transformed to the

laminate axes xl, X2 it assumes the form:

(n) (n) (n.).
T d n h )tn .( 3 .1)•

This defines the (nc in (3.11).

ct:!;:jy6;ý
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By tensor transfcrmation:

(n)- (n)- io~ *Csi'
clil Ci EICO40n + 2snen+

n sn n C4 nsn n

(n)- (n)a +C~ c22)cOS2e si2e

212(COS4n +ni 02
)41 - 4~244O2 i

()222= ( n) =2 C-1zsin 40 + a22COS40 +
n n

+ 2alCzS2eosn sin 2e n+ 4E4CaOS~con sin2On

(3.16)

(n)-C11 (n21 = 1CS n si e n +

+ 2E44 .(cos3e sine - cose sin 3e)
n n n n

(n) (n)Z2, a -Cicosesi
3 0 +

+ 22COS3ensinen + C12(CcOSO irsiD - cossO Sine)

+ 22a4a(cosensin 3On -O3 c sine-~ n ii ~ sn O
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16.1

(n) ~ (n) r 31

- 2C 1 2 coS2 n sin 2 n + Ca4 (cos 2 e - sin2 e )2 cont'd)
n n n n

The preceding developments together with the results for complex modu-

li of uniaxially fiber reinforced materials define the computation methods

of the effective complex moduli of symmetric laminates as expressed by (3.11).

For practical purposes it is frequently n.._essary to compute the effec-

tive complex compliances which are defined as the inverse of (3.11). In

matrix notation:

C* - S*zJ (3.17)

where S* denotes the effective complex compliance matrix and J is the unit

matrix. Separation of (3.17) into real and imaginary parts yields

C*R S*R,- C*I " S*I = J (a)

(3.18)

C*R * S*I+ C* * S*R =0

Great facilitation is achieved if it is noted that in view of (2.6) the

second term in the left side of (3.18a).can be neglected with respect to

the first. It then follows:

C*R S*R j (a)

(3.19)

S*I=- S*R "C ° (b)



Thus, once C*R and C*I have been computed from (3.11), (3.19) define the

effective complex compliance matrix by simple real matrix operations.

Another important simplification is obtained if in the laminate

to each pair with reinforcement angle en and thickness tn corresponds

another pair with reinforcement -O0 and same 'hickness tn. It is then

easily realized by the form of (3.16) that al1 contributions to (3.11)

of terms with odd powers of cosOn and sinGn cancel mutually. Thus in
n n

* this event the effective complex moduli matrix (3.11) has the form

* * 1  C12

C111 122  0 C*12 C 2  ]
&. 1122  Jt2 L at C2* (3.20)

0 0 C121  0 0 CE*a

and so the laminate is macroscopically orthotropic. The situation just

described is of frequent practical occurrence. For example a symmetric

laminate with laminae reinforcement in 0 = 0 , 9 0 %, ± 45 directions.n

I

l4
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4. Structural Applications

4.1 Free flexural vibrations of a
fiber reinforced beam

As a first example there is considered the case of free flexural vibrations

of a simply supported beam which is uniaxially reinforced in beam axis direction.

The purpose of the investigation is to compare vibration damping due to matrix

viscoelasticity on the basis of the usual theory which neglects the effect of

shear and on the basis of the more refined Timoshenko theory which takes into ac-

count shear as well as rotatory inertia. For isotropic materials, in which the

complex Young's modulus loss tangent and the complex shear modulus loss tangent

are of same order, the added effect of shear and rotatory inertia is small for

vibration modes of low order and for long beams. In the present case, however,

where the axial Young's modulus loss tangent is by an order of magnitude smaller

than that of the axial shear modulus (section 2) the situation is quite different

as will be shown below:

Conisidering only the effect of flexure the differential equation of the

freely vibrating beam is:

c2  + -0 (a)

(4.1)

2 EAI (b)
42 

4

4 ~4~4~ -~ ~A
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where:

EA " complex axial Young's modulus

I- mziaent cf inertia

A - area of cross section

p- density

Boundary conditions of free support are:

aW, IT 0X O'k (4.2)

1 Conventional viscoelastic vibrations analysis shows that the modes

of vibration are given by

W (X,t) =AnSin ME exp1 tn )epM.t

S~(4.3)

where A. is an arbitrary constant and

2% pA (a)

(4.4)

o l.T�tsans( tans (b
1+

R

Equ. (4.4b) is a repetition of (2.7d). The results are valid for small

enough loss tangents, of ordev (2.6). The attenuation n n is defined by
R

nn - tan6, (4.5)

.5
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Next the same beam is considered in Timosh,-iko fashion, with shear

and rotatory inertia. By the correspondence principle for viscoelastic

vibrations [5], thc elastic Timoshenko beam equation [6] transforms into

2 a 2 w 2( kEA +w kr 2 p 9wc 2 + 14."- T -- 2( + AA + k 0 (4.6)

GA Gxat A '

where c2 is given by (4.1b), GA is the axial complex shear modulus (2.8a),

k is the strength of materials shear shape factor of the section and

r- I/A.

Equ. (4.6) with boundary conditions of simple support admits a solution

of the form, [6]:

nwx int (7

wn(xz) =Asin -- e (n.

where @ is a solution of the complex freque.-cy equation:

cnO _ [1+0n2 r 2 (1 + A 2 + kr_6 3  = 0 (a)n n +A n GA n

(4.8)

a: n(b)

The solution of (4.8) is the complex "frequency"

+ (4.9)

n n' n



- 21-

In the case of small loss tangents of order (2.6) it can be shown by

straightforward calculations that:

R2  E R2 2

C 4 -l÷cn 2r 2 (l + 11 2 R + k n R 0 (a)
"n 1nG A n G A n

(4.10)

R 2 EyR
c = A (b)

n (4.11)

0 R R 2 R 2 kERR Rn/R 2  
2 ERR

n n IA - AEnGA tanG_(C R• n R AA) tan
t2R I P 2 RR

20 krP/Gý4+a Y(1+kEA/GA)]

n~ n

It is seen that (4.10) is the frequency equation of an elastic

Timoshenko beam in terms of real parts of complex moduli. Its validity is

based on the usual additional assumption that real parts of complex moduli

vary sufficiently slowly with frequency. Once has been computed from
n

I
(4t.10), a n can be computed from (4.11).

R
A mostly sufficient accurate approximation for a is:

R cRR 2a1 1 22l +ERA

" •Rn n 2 inr•r(1+--.] (4.12)
GA

For slender beams and low modes the first term in each of numerator

and denominator of (4.11) is insignificant reiative to the others. Thus:
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anI

+ 2 R R2  4.tR2

T A lýGj)tanS G + (c " %n E (.3S........ . .(4 . 13)
I~sr( + 21 RR

Substitution of (4.9) into (4.7) results in:

I R1

w~(x,t) uA sin ! .en 0 n (4.14)
wn a

where the attenuation is now:

fin = �In (4.15)
n n

To obtain an idea of the relative importance of damping due to shear

and rotatory inertia, the attenuations (4.5) and (4.15) have been compared

for the following case: Beam of rectangular section

k = 40.0" h 2.0"

Material: Boron fibers, Epoxy matrix

f Z vM
Ee-60xlOpsi, Em1R.SXlO psi, Gm R-.185XlO6psi

tonsE - tan6 G m tan6m - .05

R R-

"EAR 30.25 x 1O6p31 GAR .544 x l06psiA
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tan t 3  tan6 - tan6

E 2 G M

p * 1.78 x 10-4 lb(mass)/ins

It has been assumed for simplicity that real paits of complex moduli and

loss tangents are frequency independent.

For the first mode:

R
w a a 1480 1/sec

Bending only

l "- .308 1/sec

R 1380 1/sec

Timoshenko beam

fh ,,4.44 1/sec

It is seen that shear and rotatory inertia have a very small effect on thm

frequency but increase the attenuation by a factor of A4.4. This example

shows that for damping of viscoelastic' fiber reinforced beams shear and rota-

tory inertia are of major importance.

4.2 Forced torsional vibrations of

laminated cylinder.

A thin walled cylinder which is laminated through its thickness is• built

in at onb edge and is subjzcted to a sinusoidal forcing torque at its

other edge. Each lamina is uniaxially rainfotced and has the same material

properties with respect to its material axes. The laminate is syimetric.

* with following lamination scheme;

reinforcement in generator direction 'axia?) - volume fraction vo

N 0
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r i
reinforcement in -6 direction - volume fraction v0

. • reinforcement in - 6 direction - volume fraction "-.6

v a v (4.16)

"For the purpose of analysis of torsional vibrations, the only effective

laminate property needed is the effective complex shear modulus G1 2. It

follows from (3.11) that:

G1 C11 (0 ý'1212t /h + C+)1212t,6/h +

(4.17)

+ -) C1 21 2t/h

where to is the sum of the thickness of the 60= laminae, t+, and t_ - the

sums of the thicknesses of the +0 and -0 laminae, respectively.

Now:

t/h = v (4.18)

t /h u t_ v0

and from the last of (3.16)

'C 2 1 2 zOC)•0) - 12 12 = (0) C121-2 z0M& (4.19)

Introduction of (4.18-19) into (4.17) yields

G* 2 (o) + 2(0)C4V0 (4.20)

By the last of (3.16) and from (2.4), (4.20) assumes the form:

0GAo [T(n+ 2•+T)Sin 20+2GAcs 2 0]v (4.21)
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It has been mentioned before (Section 2) that the imaginary parts of

nz and k can be neglected with respect to the imaginary parts of G and
G for the usual fiber reinforced material. Consequently, the separation of
A

(4.21) into real and imaginary parts assumes the form:

*R R 1 lR kRZRR 220 R 2 (a)
G12  GAoY+ [I(n A R21R+GT)sin20 + 2G cos262]v

(4.22)
*I =lp°( 2s 2 (b)

G12 = + G 0  +2GCs0v(

In the usual fiber reinforced materials generally

1 R RLRR R
Yn +k20, G T > 2G A

G < 2 GA

It follows that the shear loss tangent of the laminate

*I
G12

tan6* - -- (4.23)G*R

has a maximum for 0=0 and decreases monotonically to a minimum for 0-450.

On the other hand shear strength is smallest for 0-0 and increases monotoni-

cally to a maximum for 0-45*. Therefore, in design for maximum damping it

is necessary to choose the smallest angle 0 which complies with allowable shear

"stress.

Let the forcing torque at the edge x1st be represented as

MH Mosinwt
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and let the a~tplitude of angle of twist 0 at xj=k be written Amp (•).

By standard theory of viscoelastic vibrations with small loss tangents

cM % /sin 2 (2c)+sinh2 (28) (4.24)

Amp(*) R cos(2ct) + cosh (20)
JG 120)1

where

.RC2 .12C

A pJ
wPi

C

2c

p - density

C - Torsional constant of section

J - Polar moment of inertia of section

G*R - equ. (4.22a)

6* - equ. (4.23)

Numerical analysis has been carried out for a laminate composed of boron/

epoxy laminae with both constituent volume fractions equal to .5. Laminae

fractional volumes in laminate are

Vo 0  .6 V =e • .2 with 0 - 22.500

Analysis has been performed in following stages:

(a) Experimental results for epoxy matrix complex shear modulus and loss

tangent as a function of frequency have been described by an empirical

formula.

(b) This formula together with elastic properties of fibers have been used

to compute effective complex moduli of the uniaxially reinforced laminae,



_.27 -

as a function of frequency. For this purpose results (2.7-9) and other

formulae given in [2,3] have been used.

(c) With the aid of single laminae properties the real and imaginary parts

(4.22) of the effective complex shear modulus Gh have been computed as

function of frequency. It should be noted that in the present applica-

tion 1 indicates generator direction of cylinder, and 2 the direction

normal to generator and tangent to section contour.
*I

(d) The results foz G12 and Gdz have been used to compute (4.24) as a func-

tion of frequency w.

A plot of such results is shown in Fig. 3 for a cylinder of length =100 in.

and thin walled circular section. It is seen that the first resonance peak is

very significu.it and may be regarded as an elastic resonance. However, the

damping of the viscoelastic matrix becomes more effective with higher order

resonances, the fourth one being considerably reduced.

5. Conclusion

It has been shown that complex moduli of uniaxially fiber reinforced

materials and of laminates of such materials, consisting of viscoelastic matrix

and elastic fibers can be computed in straight forward fashion. The results

can be used for analysis of structural vibrations on the basis of available

theory.

Two structural examples have been given vo assess the significance of

vibration damping.

Many more other interesting applications can be analyzed by the theory
we

-, which has been presented.

ix



- 28 -

References
I

(1) Z. Hashin - "Complex moduli of viscoelastic composites - I. General
theory and application to particulate composites" Int. J. Solids
Structures 6-, 539-552, (1970).

(2) Z. Hashin - "Complex moduli of viscoelastic composites - II. Fiber
reinforced materials" Int. J. Solids Structures 6, 797-807, (1970).

(3) Z. Hashin - "Theory of fiber reinforced materials" Pt. 4, Final Report.
Contract NAS 1-8818 NASA, Langley Research Center, Nov. (1970)
NASA CR-1974 (1972).

(4) Y. Stavsky - "Bending and stretching of laminated aelotropic plates"
Trans. ASCE, EM Div. 127, Pt. I, 1194-1219, (1962).

(5) R.M. Christensen - Theory of Viscoelasticity - Academic Press, (1971).

(6) W. Nowacki - Dynamics of Elastic Systems - Chapman & Hall, (1963).

{I

4:



1100 ,-00

x .1

4'":•• . _.. . X 1

X3,jj

FIG.1 UNIAXIALLY FIBER
REINFORCED MATERIAL
(n) (.n)

X2 X2 ^,,(

4'x n

FIG. 2 LAMINATE

A-,

.xA



989i

f (n) Amp(8)= c f(n )

15

10 I I
20

SCps100 975 1625 220 5

FIG. 3 AMPLITUDE OF ANGLE OF
TWIST


